Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# *catena*-Poly[tris(2,4,6-trimethylanilinium) [(tetrachloridocadmium)*µ*-chlorido]]

#### Tao Rong

Ordered Matter Science Research Center, Southeast University, Nanjing 210096, People's Republic of China Correspondence e-mail: rongtao198806@163.com

Received 14 July 2011; accepted 17 July 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean  $\sigma$ (C–C) = 0.005 Å; R factor = 0.033; wR factor = 0.068; data-to-parameter ratio = 21.6.

The asymmetric unit of the title compound,  $\{(C_9H_{14}N)_3-[CdCl_5]\}_n$ , comprises three 2,4,6-trimethylaniline dications and one half of the  $[Cd_2Cl_{10}]^{6-}$  anion. The Cd atoms are each coordinated by six Cl atoms, with octahedra linked by bridging, apical Cl atoms, forming linear chains running parallel to the *a* axis. The trimethylanilinium cations form stacks between the chains of CdCl<sub>6</sub> octahedra.

#### **Related literature**

The title compound was studied as part of our work to obtain potential ferroelectric phase-change materials. For general background to ferroelectric metal-organic frameworks, see: Fu *et al.* (2009); Ye *et al.* (2006); Zhang *et al.* (2008, 2010).



#### **Experimental**

Crystal data

 $\begin{array}{l} ({\rm C}_{3}{\rm H}_{14}{\rm N})_{3}[{\rm CdCl}_{5}]\\ M_{r}=698.29\\ {\rm Orthorhombic},\ P2_{1}2_{1}2_{1}\\ a=10.729\ (2)\ {\rm \AA}\\ b=16.430\ (3)\ {\rm \AA}\\ c=17.996\ (4)\ {\rm \AA} \end{array}$ 

 $V = 3172.2 (11) \text{ Å}^{3}$ Z = 4 Mo K\alpha radiation \(\mu = 1.13 \text{ mm}^{-1}\) T = 293 K 0.20 \times 0.20 \text{ mm} 0.20 \text{ mm}\)

#### Data collection

Rigaku SCXmini diffractometer Absorption correction: multi-scan (*CrystalClear*; Rigaku, 2005)  $T_{min} = 0.798, T_{max} = 0.798$ 

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.033$  337 p

  $wR(F^2) = 0.068$  H-att

 S = 1.07  $\Delta \rho_{max}$  

 7271 reflections
  $\Delta \rho_{mix}$ 

7271 independent reflections 6752 reflections with  $I > 2\sigma(I)$  $R_{\text{int}} = 0.046$ 

33173 measured reflections

337 parameters H-atom parameters constrained 
$$\begin{split} &\Delta \rho_{max} = 0.30 \text{ e } \text{\AA}^{-3} \\ &\Delta \rho_{min} = -0.53 \text{ e } \text{\AA}^{-3} \end{split}$$

# Table 1Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$                       | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|----------------------------------------|------|-------------------------|--------------|--------------------------------------|
| $N2-H2C\cdots Cl3$                     | 0.89 | 2.26                    | 3.129 (3)    | 166                                  |
| $N3 - H3B \cdot \cdot \cdot Cl3$       | 0.89 | 2.70                    | 3.283 (3)    | 124                                  |
| $N3-H3B\cdots Cl5$                     | 0.89 | 2.62                    | 3.158 (3)    | 119                                  |
| $N2-H2A\cdots Cl6^{i}$                 | 0.89 | 2.40                    | 3.250 (3)    | 160                                  |
| $N3-H3A\cdots Cl2^{ii}$                | 0.89 | 2.41                    | 3.264 (3)    | 160                                  |
| $N1 - H1A \cdot \cdot \cdot Cl4^{iii}$ | 0.89 | 2.43                    | 3.278 (3)    | 160                                  |
| $N1 - H1B \cdot \cdot \cdot Cl3^{iv}$  | 0.89 | 2.61                    | 3.285 (3)    | 134                                  |
| $N1 - H1C \cdot \cdot \cdot Cl2^{iv}$  | 0.89 | 2.43                    | 3.306 (3)    | 169                                  |

Symmetry codes: (i)  $x - \frac{1}{2}, -y + \frac{1}{2}, -z + 2$ ; (ii)  $x + \frac{1}{2}, -y + \frac{1}{2}, -z + 2$ ; (iii)  $x - \frac{1}{2}, -y + \frac{3}{2}, -z + 1$ ; (iv) x, y + 1, z - 1.

Data collection: *CrystalClear* (Rigaku, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg & Putz, 2005); software used to prepare material for publication: *SHELXL97*.

The author is grateful to the starter fund of Southeast University for financial support to buy the X-ray diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2312).

#### References

- Brandenburg, K. & Putz, H. (2005). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Fu, D. W., Ge, J. Z., Dai, J., Ye, H. Y. & Qu, Z. R. (2009). Inorg. Chem. Commun. 12, 994–997.
- Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Ye, Q., Song, Y. M., Wang, G. X., Chen, K. & Fu, D. W. (2006). J. Am. Chem. Soc. 128, 6554–6555.
- Zhang, W., Xiong, R. G. & Huang, S. P. D. (2008). J. Am. Chem. Soc. 130, 10468–10469.
- Zhang, W., Ye, H. Y., Cai, H. L., Ge, J. Z. & Xiong, R. G. (2010). J. Am. Chem. Soc. 132, 7300–7302.

Acta Cryst. (2011). E67, m1139 [doi:10.1107/S1600536811028650]

## *catena*-Poly[tris(2,4,6-trimethylanilinium) [(tetrachloridocadmium)-µ-chlorido]]

## T. Rong

### Comment

The study of ferroelectric materials has received much attention. Some materials have predominantly dielectric-ferroelectric performance. The title compound was studied as part of our work to obtain potential ferroelectric phase-change materials Fu *et al.* (2009); Ye *et al.* (2006); Zhang *et al.* (2008, 2010).

As one part of our continuing studies on dielectric-ferroelectric materials, we synthesized the title compound  $(C_9H_{14}N)_3$ .CdCl<sub>5</sub>. Unfortunately, the study carried out on the title compound indicated that the permittivity is temperature-independent, suggesting that there may be no dielectric disuniformity between 80 K to 350 K.

Theasymmetric unit of the title compound contains three  $[C_9H_{47}N]^+$  basic ion and half of the  $[Cd_2Cl_{10}]^{6-}$  complex ionwhich is situated on an inversion centre. The intermolecular hydrogen bonds (N1—H···Cl2, N1—H···Cl3, N1—H···Cl4, N2—H···Cl3, N2—H···Cl6, N3—H···Cl2, N3—H···Cl3 and N3—H···Cl5 link the molecules into a one-dimensional linear structure and stabilize the structure.

#### **Experimental**

A solution of chlorhydric acid (10 mmol) was added to a solution of half equimolar amount of 2,4,6-Trimethylaniline inethanol (20 mL), then cadmium chloride(5 mmol) in water (10 mL) was added.Crystals suitable for structure determination were grown by slow evaporation of the mixture at room temperature.

#### Refinement

Positional parameters of all the H atoms bonded to C atoms were calculated geometrically and were allowed to ride on the C atoms to which they are bonded, with  $U_{iso}(H) = 1.2Ueq(C)$  and  $U_{iso}(H) = 1.5Ueq(C)$  for the methyl group. The other H bonded to N atoms were calculated geometrically and were allowed to ride on the N atoms with  $U_{iso}(H) = 1.2Ueq(N)$ .

#### **Figures**



Fig. 1. The molecular structure of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.[The suffix A denotes the symmetry code:  $-1/2 + x \ 0.5 - y \ 2 - z$ ]



Fig. 2. A view of the packing of the title compound, stacking along the *a* axis. Dashed lines indicate hydrogen bonds.

#### catena-Poly[tris(2,4,6-trimethylanilinium) [(tetrachloridocadmium)-µ-chlorido]]

F(000) = 1432 $D_{\rm x} = 1.462 \text{ Mg m}^{-3}$ 

 $\theta = 3.1-27.5^{\circ}$   $\mu = 1.13 \text{ mm}^{-1}$  T = 293 KPrism, colourless  $0.20 \times 0.20 \times 0.20 \text{ mm}$ 

Mo K $\alpha$  radiation,  $\lambda = 0.71073$  Å Cell parameters from 7271 reflections

#### Crystal data

| $(C_9H_{14}N)_3[CdCl_5]$      |
|-------------------------------|
| $M_r = 698.29$                |
| Orthorhombic, $P2_12_12_1$    |
| Hall symbol: P 2ac 2ab        |
| a = 10.729 (2) Å              |
| <i>b</i> = 16.430 (3) Å       |
| <i>c</i> = 17.996 (4) Å       |
| $V = 3172.2 (11) \text{ Å}^3$ |
| Z = 4                         |

### Data collection

| Rigaku SCXmini<br>diffractometer                                  | 7271 independent reflections                                              |
|-------------------------------------------------------------------|---------------------------------------------------------------------------|
| Radiation source: fine-focus sealed tube                          | 6752 reflections with $I > 2\sigma(I)$                                    |
| graphite                                                          | $R_{\rm int} = 0.046$                                                     |
| Detector resolution: 13.6612 pixels mm <sup>-1</sup>              | $\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.1^{\circ}$ |
| CCD_Profile_fitting scans                                         | $h = -13 \rightarrow 13$                                                  |
| Absorption correction: multi-scan<br>(CrystalClear; Rigaku, 2005) | $k = -21 \rightarrow 21$                                                  |
| $T_{\min} = 0.798, T_{\max} = 0.798$                              | $l = -23 \rightarrow 23$                                                  |
| 33173 measured reflections                                        |                                                                           |

#### Refinement

| Refinement on $F^2$             | Primary atom site location: structure-invariant direct methods                      |
|---------------------------------|-------------------------------------------------------------------------------------|
| Least-squares matrix: full      | Secondary atom site location: difference Fourier map                                |
| $R[F^2 > 2\sigma(F^2)] = 0.033$ | Hydrogen site location: inferred from neighbouring sites                            |
| $wR(F^2) = 0.068$               | H-atom parameters constrained                                                       |
| <i>S</i> = 1.07                 | $w = 1/[\sigma^2(F_o^2) + (0.0235P)^2 + 1.6716P]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| 7271 reflections                | $(\Delta/\sigma)_{\rm max} = 0.006$                                                 |
| 337 parameters                  | $\Delta \rho_{max} = 0.30 \text{ e } \text{\AA}^{-3}$                               |
| 0 restraints                    | $\Delta \rho_{\text{min}} = -0.53 \text{ e } \text{\AA}^{-3}$                       |

### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $U_{iso}*/U_{eq}$  $\boldsymbol{Z}$ х y Cd1 0.612594 (19) 0.03061 (6) 0.264994 (14) 1.010000 (11) Cl2 0.57453 (8) 0.19719 (5) 1.13969 (4) 0.0422(2)C13 0.59250(7) 0.12522 (5) 0.93873 (4) 0.03403 (17) Cl4 0.63550(8) 0.33959(5)0.88122(5)0.03973 (19) Cl5 0.86375 (6) 0.22240 (5) 1.00838 (4) 0.04127 (19) Cl6 0.67019 (9) 0.39688 (6) 1.07986(6) 0.0501(2)N2 0.3915 (3) 0.19586 (18) 0.83050 (14) 0.0433(7)H2A 0.3185 0.1765 0.8460 0.065\* H2B 0.3952 0.2491 0.8394 0.065\* H2C 0.4529 0.1708 0.8546 0.065\* C15 0.74953 (17) 0.4047 (3) 0.1812 (2) 0.0328 (7) N3 0.8225 (3) 0.19469 (18) 0.83647 (15) 0.0407(7) H3A 0.8995 0.2148 0.8355 0.061\* H3B 0.1631 0.8135 0.8763 0.061\* H3C 0.7678 0.2354 0.8385 0.061\* C6 0.3959 (3) 0.97807 (18) 0.08418 (17) 0.0336(7) C10 0.3967 (3) 0.24689 (18) 0.70168 (17) 0.0360(7) C5 0.3917 (3) 0.96051 (19) 0.15963 (16) 0.0346(7) N1 0.3849 (3) 1.06423 (16) 0.06078 (16) 0.0449 (7) 0.3075 0.067\* H1A 1.0816 0.0690 H1B 0.4024 1.0684 0.0126 0.067\* H1C 0.4382 1.0945 0.0867 0.067\* C1 0.4063 (3) 0.9183 (2) 0.03014 (17) 0.0360(7) C16 0.3799 (4) 0.3324(2)0.7294(2)0.0506(9)H16A 0.3039 0.3360 0.7574 0.076\* H16B 0.3761 0.3691 0.6879 0.076\* H16C 0.4490 0.3469 0.7607 0.076\* C23 0.7048(2)0.0393 (8) 0.7664 (3) 0.1862 (2) C27 0.7503 (4) 0.2771 (3) 0.7006(2) 0.0553 (11) H27A 0.6782 0.2929 0.7286 0.083\* H27B 0.7397 0.2931 0.6496 0.083\* H27C 0.083\* 0.8228 0.3034 0.7207 C4 0.4004(3)0.8788(2)0.18055 (18) 0.0382(7)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

| H4   | 0.3989     | 0.8657     | 0.2308        | 0.046*      |
|------|------------|------------|---------------|-------------|
| C3   | 0.4112 (3) | 0.8174 (2) | 0.12931 (19)  | 0.0378 (8)  |
| C14  | 0.4213 (3) | 0.1022 (2) | 0.72525 (18)  | 0.0344 (7)  |
| C9   | 0.3765 (4) | 1.0260 (2) | 0.21723 (19)  | 0.0460 (9)  |
| H9A  | 0.4447     | 1.0637     | 0.2137        | 0.069*      |
| H9B  | 0.3757     | 1.0019     | 0.2658        | 0.069*      |
| Н9С  | 0.2995     | 1.0543     | 0.2090        | 0.069*      |
| C11  | 0.4044 (3) | 0.2298 (2) | 0.62569 (18)  | 0.0445 (8)  |
| H11  | 0.4005     | 0.2726     | 0.5920        | 0.053*      |
| C7   | 0.4097 (5) | 0.9373 (2) | -0.05204 (19) | 0.0522 (10) |
| H7A  | 0.4154     | 0.8875     | -0.0798       | 0.078*      |
| H7B  | 0.4809     | 0.9707     | -0.0627       | 0.078*      |
| H7C  | 0.3351     | 0.9658     | -0.0658       | 0.078*      |
| C2   | 0.4145 (3) | 0.8384 (2) | 0.05417 (19)  | 0.0414 (8)  |
| H2   | 0.4225     | 0.7972     | 0.0190        | 0.050*      |
| C21  | 0.8163 (3) | 0.0623 (2) | 0.7733 (2)    | 0.0409 (9)  |
| C22  | 0.8005 (3) | 0.1463 (2) | 0.76894 (19)  | 0.0344 (7)  |
| C19  | 0.7601 (4) | 0.0551 (3) | 0.6430 (2)    | 0.0533 (11) |
| C12  | 0.4174 (3) | 0.1513 (2) | 0.59900 (18)  | 0.0447 (9)  |
| C13  | 0.4265 (3) | 0.0884 (2) | 0.64915 (19)  | 0.0406 (8)  |
| H13  | 0.4363     | 0.0355     | 0.6317        | 0.049*      |
| C20  | 0.7946 (3) | 0.0186 (2) | 0.7084 (2)    | 0.0497 (10) |
| H20  | 0.8038     | -0.0376    | 0.7093        | 0.060*      |
| C26  | 0.8547 (4) | 0.0203 (3) | 0.8438 (2)    | 0.0601 (12) |
| H26A | 0.7911     | 0.0275     | 0.8808        | 0.090*      |
| H26B | 0.9315     | 0.0432     | 0.8614        | 0.090*      |
| H26C | 0.8661     | -0.0368    | 0.8344        | 0.090*      |
| C17  | 0.4321 (4) | 0.0315 (2) | 0.7783 (2)    | 0.0498 (10) |
| H17A | 0.5117     | 0.0334     | 0.8026        | 0.075*      |
| H17B | 0.4246     | -0.0186    | 0.7512        | 0.075*      |
| H17C | 0.3670     | 0.0348     | 0.8147        | 0.075*      |
| C24  | 0.7476 (3) | 0.1390 (3) | 0.6415 (2)    | 0.0498 (10) |
| H24  | 0.7262     | 0.1645     | 0.5971        | 0.060*      |
| C8   | 0.4193 (4) | 0.7297 (2) | 0.1520 (2)    | 0.0523 (9)  |
| H8A  | 0.4091     | 0.7254     | 0.2048        | 0.078*      |
| H8B  | 0.4992     | 0.7082     | 0.1380        | 0.078*      |
| H8C  | 0.3548     | 0.6993     | 0.1276        | 0.078*      |
| C25  | 0.7373 (5) | 0.0056 (4) | 0.5723 (3)    | 0.0867 (18) |
| H25A | 0.7478     | -0.0513    | 0.5829        | 0.130*      |
| H25B | 0.7957     | 0.0218     | 0.5347        | 0.130*      |
| H25C | 0.6540     | 0.0151     | 0.5549        | 0.130*      |
| C18  | 0.4226 (4) | 0.1344 (3) | 0.5161 (2)    | 0.0678 (12) |
| H18A | 0.5070     | 0.1392     | 0.4990        | 0.102*      |
| H18B | 0.3711     | 0.1729     | 0.4903        | 0.102*      |
| H18C | 0.3928     | 0.0803     | 0.5065        | 0.102*      |
|      |            |            |               |             |

|          |       |         |            | ?       |   |
|----------|-------|---------|------------|---------|---|
| Atomic ( | displ | acement | parameters | $(A^2)$ | ) |

| Cd1 0.02973 (10) 0.03547 (11) 0.02664 (10) -0.00434 (10) 0.00074 (9) | -0.00228 (9) |
|----------------------------------------------------------------------|--------------|
| Cl2 0.0450 (5) 0.0514 (5) 0.0302 (4) 0.0034 (4) 0.0016 (3)           | 0.0044 (4)   |
| Cl3 0.0329 (4) 0.0339 (4) 0.0354 (4) -0.0027 (3) 0.0002 (3)          | -0.0018 (3)  |
| Cl4 0.0413 (5) 0.0397 (4) 0.0381 (4) -0.0007 (4) 0.0021 (4)          | 0.0066 (3)   |
| Cl5 0.0268 (3) 0.0618 (5) 0.0352 (4) -0.0017 (3) -0.0009 (3)         | -0.0086 (4)  |
| Cl6 0.0518 (5) 0.0427 (5) 0.0559 (6) -0.0007 (4) -0.0048 (4)         | -0.0157 (4)  |
| N2 0.0499 (18) 0.0493 (17) 0.0309 (14) 0.0036 (17) -0.0053 (15)      | -0.0059 (12) |
| C15 0.0273 (17) 0.0417 (18) 0.0293 (16) -0.0013 (15) -0.0032 (14)    | -0.0004 (13) |
| N3 0.0399 (17) 0.0464 (17) 0.0359 (16) -0.0066 (14) 0.0037 (13)      | -0.0087 (13) |
| C6 0.0281 (16) 0.0309 (16) 0.0418 (18) -0.0012 (15) 0.0027 (15)      | 0.0076 (13)  |
| C10 0.0297 (15) 0.039 (2) 0.0395 (16) -0.0038 (16) -0.0022 (13)      | 0.0020 (13)  |
| C5 0.0260 (15) 0.0423 (18) 0.0354 (17) -0.0028 (16) 0.0003 (15)      | 0.0017 (13)  |
| N1 0.0512 (17) 0.0363 (15) 0.0472 (16) -0.0002 (16) 0.0082 (17)      | 0.0031 (12)  |
| C1 0.0361 (18) 0.0374 (17) 0.0344 (17) -0.0040 (15) 0.0038 (14)      | 0.0061 (13)  |
| C16 0.057 (2) 0.039 (2) 0.056 (2) -0.001 (2) -0.008 (2)              | 0.0017 (16)  |
| C23 0.0343 (19) 0.046 (2) 0.038 (2) -0.0010 (16) 0.0051 (15)         | -0.0101 (17) |
| C27 0.067 (3) 0.053 (3) 0.046 (2) 0.004 (2) 0.0077 (19)              | 0.000 (2)    |
| C4 0.0294 (17) 0.0496 (19) 0.0357 (17) 0.0032 (17) 0.0004 (15)       | 0.0112 (14)  |
| C3 0.0311 (18) 0.0413 (18) 0.0409 (18) -0.0002 (15) 0.0032 (15)      | 0.0119 (15)  |
| C14 0.0295 (17) 0.0386 (18) 0.0352 (17) 0.0010 (14) -0.0016 (13)     | -0.0002 (14) |
| C9 0.048 (2) 0.051 (2) 0.0391 (19) 0.003 (2) 0.0048 (18)             | -0.0005 (16) |
| C11 0.0442 (19) 0.0531 (19) 0.0362 (17) -0.006 (2) 0.0026 (15)       | 0.0109 (17)  |
| C7 0.077 (3) 0.041 (2) 0.039 (2) -0.002 (2) 0.004 (2)                | 0.0055 (15)  |
| C2 0.049 (2) 0.0358 (18) 0.0394 (19) 0.0017 (16) 0.0068 (16)         | 0.0021 (14)  |
| C21 0.0284 (18) 0.041 (2) 0.053 (2) -0.0032 (16) 0.0099 (16)         | -0.0100 (17) |
| C22 0.0280 (17) 0.0413 (19) 0.0338 (18) -0.0056 (15) 0.0045 (13)     | -0.0151 (15) |
| C19 0.040 (2) 0.063 (3) 0.057 (3) 0.0045 (19) 0.0001 (18)            | -0.031 (2)   |
| C12 0.040 (2) 0.064 (2) 0.0304 (18) -0.0109 (18) 0.0049 (14)         | -0.0071 (16) |
| C13 0.0375 (19) 0.044 (2) 0.040 (2) -0.0009 (16) 0.0019 (15)         | -0.0092 (16) |
| C20 0.036 (2) 0.039 (2) 0.075 (3) -0.0036 (17) 0.0062 (19)           | -0.0208 (19) |
| C26 0.060 (3) 0.049 (2) 0.071 (3) 0.009 (2) 0.005 (2)                | 0.005 (2)    |
| C17 0.060 (3) 0.044 (2) 0.046 (2) 0.006 (2) -0.0082 (18)             | -0.0009 (17) |
| C24 0.042 (2) 0.071 (3) 0.037 (2) 0.0054 (19) -0.0033 (16)           | -0.016 (2)   |
| C8 0.060 (2) 0.0436 (19) 0.053 (2) 0.009 (2) 0.0059 (17)             | 0.0121 (19)  |
| C25 0.079 (4) 0.101 (4) 0.080 (4) 0.014 (3) -0.017 (3)               | -0.060 (3)   |
| C18 0.071 (3) 0.096 (3) 0.036 (2) -0.015 (3) 0.008 (2)               | -0.008 (2)   |
| <i>Geometric parameters (Å, °)</i>                                   |              |
| Cd1—Cl6 2 5803 (10) C3—C2 1 30                                       | 96 (4)       |

| Cd1—Cl2              | 2.6182 (9)  | C3—C8   | 1.500 (5) |
|----------------------|-------------|---------|-----------|
| Cd1—Cl4              | 2.6331 (10) | C14—C13 | 1.389 (5) |
| Cd1—Cl3              | 2.6393 (9)  | C14—C17 | 1.508 (5) |
| Cd1—Cl5 <sup>i</sup> | 2.6981 (9)  | С9—Н9А  | 0.9600    |

| 0.11 015                 | 0 50 41 (0) |             | 0.0700    |
|--------------------------|-------------|-------------|-----------|
| CdI—Cl5                  | 2.7841 (9)  | С9—Н9В      | 0.9600    |
| Cl5—Cd1 <sup>11</sup>    | 2.6981 (9)  | С9—Н9С      | 0.9600    |
| N2—C15                   | 1.484 (4)   | C11—C12     | 1.383 (5) |
| N2—H2A                   | 0.8900      | C11—H11     | 0.9300    |
| N2—H2B                   | 0.8900      | С7—Н7А      | 0.9600    |
| N2—H2C                   | 0.8900      | С7—Н7В      | 0.9600    |
| C15—C14                  | 1.380 (5)   | С7—Н7С      | 0.9600    |
| C15—C10                  | 1.384 (4)   | С2—Н2       | 0.9300    |
| N3—C22                   | 1.471 (4)   | C21—C20     | 1.391 (5) |
| N3—H3A                   | 0.8900      | C21—C22     | 1.393 (5) |
| N3—H3B                   | 0.8900      | C21—C26     | 1.503 (5) |
| N3—H3C                   | 0.8900      | C19—C20     | 1.370 (6) |
| C6—C1                    | 1.387 (4)   | C19—C24     | 1.386 (6) |
| C6—C5                    | 1.389 (4)   | C19—C25     | 1.530 (5) |
| C6—N1                    | 1.482 (4)   | C12—C13     | 1.375 (5) |
| C10-C11                  | 1.398 (4)   | C12-C18     | 1.519 (5) |
| C10-C16                  | 1.502 (5)   | С13—Н13     | 0.9300    |
| C5—C4                    | 1.397 (4)   | C20—H20     | 0.9300    |
| С5—С9                    | 1.503 (5)   | C26—H26A    | 0.9600    |
| N1—H1A                   | 0.8900      | C26—H26B    | 0.9600    |
| N1—H1B                   | 0.8900      | С26—Н26С    | 0.9600    |
| N1—H1C                   | 0.8900      | C17—H17A    | 0.9600    |
| C1—C2                    | 1.385 (4)   | С17—Н17В    | 0.9600    |
| C1—C7                    | 1.512 (4)   | С17—Н17С    | 0.9600    |
| C16—H16A                 | 0.9600      | C24—H24     | 0.9300    |
| C16—H16B                 | 0.9600      | C8—H8A      | 0.9600    |
| C16—H16C                 | 0.9600      | C8—H8B      | 0.9600    |
| C23—C22                  | 1.376 (5)   | C8—H8C      | 0.9600    |
| C23—C24                  | 1.393 (5)   | C25—H25A    | 0.9600    |
| C23—C27                  | 1.506 (5)   | C25—H25B    | 0.9600    |
| C27—H27A                 | 0.9600      | С25—Н25С    | 0.9600    |
| С27—Н27В                 | 0.9600      | C18—H18A    | 0.9600    |
| С27—Н27С                 | 0.9600      | C18—H18B    | 0.9600    |
| C4—C3                    | 1.372 (5)   | C18—H18C    | 0.9600    |
| C4—H4                    | 0.9300      |             |           |
| Cl6—Cd1—Cl2              | 87.73 (3)   | C15—C14—C17 | 122.2 (3) |
| Cl6—Cd1—Cl4              | 90.89 (3)   | C13—C14—C17 | 119.7 (3) |
| Cl2—Cd1—Cl4              | 175.69 (3)  | С5—С9—Н9А   | 109.5     |
| Cl6—Cd1—Cl3              | 170.78 (3)  | С5—С9—Н9В   | 109.5     |
| Cl2—Cd1—Cl3              | 92.88 (3)   | Н9А—С9—Н9В  | 109.5     |
| Cl4—Cd1—Cl3              | 89.14 (3)   | С5—С9—Н9С   | 109.5     |
| Cl6 Cd1 Cl5 <sup>i</sup> | 103 43 (3)  | Н9АС9Н9С    | 109 5     |
|                          | 20 20 (2)   |             | 109.5     |
|                          | 89.29 (3)   |             | 109.5     |
| Cl4—Cd1—Cl5 <sup>1</sup> | 87.06(3)    | C12—C11—C10 | 122.2 (3) |
| Cl3—Cd1—Cl5 <sup>1</sup> | 85.78 (3)   | С12—С11—Н11 | 118.9     |
| Cl6—Cd1—Cl5              | 89.11 (3)   | C10—C11—H11 | 118.9     |
| Cl2—Cd1—Cl5              | 93.06 (3)   | С1—С7—Н7А   | 109.5     |
| Cl4—Cd1—Cl5              | 91.00 (3)   | C1—C7—H7B   | 109.5     |

| Cl3—Cd1—Cl5                | 81.68 (3)   | H7A—C7—H7B    | 109.5     |
|----------------------------|-------------|---------------|-----------|
| Cl5 <sup>i</sup> —Cd1—Cl5  | 167.335 (9) | С1—С7—Н7С     | 109.5     |
| Cd1 <sup>ii</sup> —Cl5—Cd1 | 159.99 (4)  | Н7А—С7—Н7С    | 109.5     |
| C15—N2—H2A                 | 109.5       | H7B—C7—H7C    | 109.5     |
| C15—N2—H2B                 | 109.5       | C1—C2—C3      | 122.4 (3) |
| H2A—N2—H2B                 | 109.5       | C1—C2—H2      | 118.8     |
| C15—N2—H2C                 | 109.5       | С3—С2—Н2      | 118.8     |
| H2A—N2—H2C                 | 109.5       | C20—C21—C22   | 116.4 (4) |
| H2B—N2—H2C                 | 109.5       | C20—C21—C26   | 121.2 (3) |
| C14—C15—C10                | 123.0 (3)   | C22—C21—C26   | 122.4 (3) |
| C14—C15—N2                 | 118.4 (3)   | C23—C22—C21   | 123.4 (3) |
| C10-C15-N2                 | 118.6 (3)   | C23—C22—N3    | 118.6 (3) |
| C22—N3—H3A                 | 109.5       | C21—C22—N3    | 118.0 (3) |
| C22—N3—H3B                 | 109.5       | C20—C19—C24   | 118.6 (4) |
| H3A—N3—H3B                 | 109.5       | C20—C19—C25   | 121.6 (4) |
| C22—N3—H3C                 | 109.5       | C24—C19—C25   | 119.8 (5) |
| H3A—N3—H3C                 | 109.5       | C13—C12—C11   | 118.7 (3) |
| H3B—N3—H3C                 | 109.5       | C13—C12—C18   | 120.3 (4) |
| C1—C6—C5                   | 122.8 (3)   | C11—C12—C18   | 121.0 (4) |
| C1—C6—N1                   | 118.9 (3)   | C12—C13—C14   | 121.4 (3) |
| C5—C6—N1                   | 118.3 (3)   | C12—C13—H13   | 119.3     |
| C15-C10-C11                | 116.6 (3)   | C14—C13—H13   | 119.3     |
| C15-C10-C16                | 122.0 (3)   | C19—C20—C21   | 122.7 (4) |
| C11—C10—C16                | 121.3 (3)   | С19—С20—Н20   | 118.7     |
| C6—C5—C4                   | 117.4 (3)   | C21—C20—H20   | 118.7     |
| C6—C5—C9                   | 121.9 (3)   | C21—C26—H26A  | 109.5     |
| C4—C5—C9                   | 120.6 (3)   | C21—C26—H26B  | 109.5     |
| C6—N1—H1A                  | 109.5       | H26A—C26—H26B | 109.5     |
| C6—N1—H1B                  | 109.5       | C21—C26—H26C  | 109.5     |
| H1A—N1—H1B                 | 109.5       | H26A—C26—H26C | 109.5     |
| C6—N1—H1C                  | 109.5       | H26B—C26—H26C | 109.5     |
| H1A—N1—H1C                 | 109.5       | C14—C17—H17A  | 109.5     |
| H1B—N1—H1C                 | 109.5       | С14—С17—Н17В  | 109.5     |
| C2—C1—C6                   | 117.2 (3)   | H17A—C17—H17B | 109.5     |
| C2—C1—C7                   | 120.0 (3)   | С14—С17—Н17С  | 109.5     |
| C6—C1—C7                   | 122.8 (3)   | H17A—C17—H17C | 109.5     |
| C10-C16-H16A               | 109.5       | H17B—C17—H17C | 109.5     |
| C10-C16-H16B               | 109.5       | C19—C24—C23   | 121.5 (4) |
| H16A—C16—H16B              | 109.5       | C19—C24—H24   | 119.2     |
| C10—C16—H16C               | 109.5       | C23—C24—H24   | 119.2     |
| H16A—C16—H16C              | 109.5       | С3—С8—Н8А     | 109.5     |
| H16B—C16—H16C              | 109.5       | C3—C8—H8B     | 109.5     |
| C22—C23—C24                | 117.4 (4)   | H8A—C8—H8B    | 109.5     |
| C22—C23—C27                | 123.1 (3)   | С3—С8—Н8С     | 109.5     |
| C24—C23—C27                | 119.6 (4)   | H8A—C8—H8C    | 109.5     |
| С23—С27—Н27А               | 109.5       | H8B—C8—H8C    | 109.5     |
| С23—С27—Н27В               | 109.5       | C19—C25—H25A  | 109.5     |
| H27A—C27—H27B              | 109.5       | C19—C25—H25B  | 109.5     |

| С23—С27—Н27С                             | 109.5                                 | H25A—C25—H25B | 109.5 |
|------------------------------------------|---------------------------------------|---------------|-------|
| H27A—C27—H27C                            | 109.5                                 | С19—С25—Н25С  | 109.5 |
| H27B—C27—H27C                            | 109.5                                 | H25A—C25—H25C | 109.5 |
| C3—C4—C5                                 | 122.1 (3)                             | H25B—C25—H25C | 109.5 |
| C3—C4—H4                                 | 118.9                                 | C12-C18-H18A  | 109.5 |
| C5—C4—H4                                 | 118.9                                 | C12-C18-H18B  | 109.5 |
| C4—C3—C2                                 | 118.1 (3)                             | H18A—C18—H18B | 109.5 |
| C4—C3—C8                                 | 121.9 (3)                             | C12-C18-H18C  | 109.5 |
| C2—C3—C8                                 | 120.0 (3)                             | H18A—C18—H18C | 109.5 |
| C15-C14-C13                              | 118.1 (3)                             | H18B-C18-H18C | 109.5 |
| Symmetry codes: (i) $x-1/2, -y+1/2, -z+$ | 2; (ii) $x+1/2$ , $-y+1/2$ , $-z+2$ . |               |       |

| Hydrogen-hond geometry | (Å   | °) |
|------------------------|------|----|
| nyurozen bonu zeomeny  | (11) |    |

| H···A | $D \cdots A$                                                            | D—H···A                                                                                                                                                      |
|-------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.26  | 3.129 (3)                                                               | 166.                                                                                                                                                         |
| 2.70  | 3.283 (3)                                                               | 124.                                                                                                                                                         |
| 2.62  | 3.158 (3)                                                               | 119.                                                                                                                                                         |
| 2.40  | 3.250 (3)                                                               | 160.                                                                                                                                                         |
| 2.41  | 3.264 (3)                                                               | 160.                                                                                                                                                         |
| 2.43  | 3.278 (3)                                                               | 160.                                                                                                                                                         |
| 2.61  | 3.285 (3)                                                               | 134.                                                                                                                                                         |
| 2.43  | 3.306 (3)                                                               | 169.                                                                                                                                                         |
|       | H ··· A<br>2.26<br>2.70<br>2.62<br>2.40<br>2.41<br>2.43<br>2.61<br>2.43 | I $H \cdots A$ $D \cdots A$ 2.26 $3.129$ (3)2.70 $3.283$ (3)2.62 $3.158$ (3)2.40 $3.250$ (3)2.41 $3.264$ (3)2.43 $3.278$ (3)2.61 $3.285$ (3)2.43 $3.306$ (3) |

Symmetry codes: (i) x-1/2, -y+1/2, -z+2; (ii) x+1/2, -y+1/2, -z+2; (iii) x-1/2, -y+3/2, -z+1; (iv) x, y+1, z-1.







